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A NonequiUbrium Analog of the Percus-Yevick 
Equation 
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A new theoretical description of nonequilibrium phenomena has been obtained 
that is analogous to the very successful Percus-Yevick equation of equilibrium 
fluids. The success of the equilibrium Percus-Yevick theory in describing 
hard-core systems suggests the nonequilibrium analog will also be quite good. 
Previously, we reported a new construction of the equilibrium Percus-Yevick 
equation which is applicable in the nonequilibrium domain and utilizes the 
BBGKY hierarchy in addition to some elementary ideas of functional expan- 
sions. The nonequilibrium Percus-Yevick theory contains an appealing physical 
picture wherein two fluid particles interact via an effective interaction Liouville 
operator which is the "true" interaction Liouville operator weighted by the 
(renormalized) second correlation function. The Percus-Yevick analog equation 
includes the usual "simple ring" and "repeated ring" dynamical processes in 
addition to more unusual "ring within ring" processes. The equilibrium Percus- 
Yeviek theory indicates these "ring within ring" processes should be quantita- 
tively important especially for dense gases and liquids. 
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1. I N T R O D U C T I O N  

Previous ly ,  we  gave  a b r ie f  r epor t  of  a n e w  theore t i ca l  desc r ip t ion  of  

n o n e q u i l i b r i u m  p h e n o m e n a  a n a l o g o u s  to the  ve ry  success fu l  P e r c u s -  

Y e v i c k  e q u i l i b r i u m  theo ry  of  l iquids.  (53) H e r e  we desc r ibe  in s o m e  de ta i l  

h o w  the  n o n e q u i l i b r i u m  a n a l o g  e q u a t i o n  was  cons t ruc ted ,  a n d  also we  

s h o w  the  r e l a t ion  of  this n e w  e q u a t i o n  to o the r  r ecen t  work .  Th is  n e w  

e q u a t i o n  is of  c o n s i d e r a b l e  in te res t  s ince the  e q u i l i b r i u m  P e r c u s - Y e v i c k  
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equation (44) for the two-particle distribution function is perhaps the best 
existing description of a fluid consisting of particles interacting via a 
hard-core potential energy. (5~ The success of the equilibrium Percus- 
Yevick theory motivated the nonequilibrium analog which we have con- 
structed. A future paper will be devoted to various tests of the nonequilib- 
rium analog of the Percus-=Yevick equation provided by recent computer 
studies.(1,58) Before presenting our construction we find it useful to give, in 
broad outline, some history of nonequilibrium phenomena to place this new 
equation in context. 

Much of our present theoretical understanding of nonequilibrium 
phenomena is embodied in the Boltzmann kinetic equation. (5'9'1~ The 
Boltzmann equation is accepted as a good description of nonequilibrium 
phenomena in low-density gases for its ability to predict both laser light 
scattering spectra and autocorrelation functions obtained via computer 
molecular dynamics studies. (1'9'1~ It  was natural to seek an extension of the 
Boltzmann equation into the dense gas and liquid domain; however, 
adaptations of Boltzmann's intuitive construction to gases of moderate 
density were largely unfruitful, except for the one successful extension of 
Enskog.(~9'l~ 

Further development did not occur in the nonequilibrium theory of 
dense fluids until the Boltzmann-Enskog equation was obtained in a more 
deductive manner from the Liouville equation through the work of Bogo- 
liubov, (3) Born and Green, (6) and Kirkwood (31) in the 1940s. Workers in 
the field expected nonequilibrium functions such as transport coefficients 
to have virial expansions in density much as an equilibrium property like 
pressure has a virial expansion. (2~ Dorfman and Cohen, (16) Frieman and 
Goldman, (23) and Weinstock (55) carefully investigated the virial expansion 
of the one-particle, nonequilibrium distribution function. They found the 
surprising result that the Choh-Uhlenbeck term, that is, the term following 
the Boltzmann-Enskog term in the density expansion, diverges for long 
times. 

The divergence difficulty was isolated to certain terms of the perturba- 
tion expansion known as "ring terms" because of their topology. The ring 
terms correspond to long-range dynamically correlated processes. Ka- 
wasaki and Oppenheim (3~ suggested the most divergent terms in each 
power of the density be selected and summed separately. This selective 
summation of the ring terms to all orders in density (of the naive density 
expansion) produced a logarithmic term in the density expansions of 
transport coefficients, and thus a first-order replacement of the virial 
expansion was found. 

The upheaval in kinetic theory produced by the discovery of the 
divergences in the density expansions was amplified by the discovery in the 
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computer molecular dynamics studies of Alder et  aL (l) that the velocity 
autocorrelation did not decay exponentially for long times as expected 
classically on the basis of the Boltzmann equation. It was noticed by 
Dorfman and Cohen (17) that the ring terms would also yield this nonex- 
ponential t - 3 / 2  behavior of the velocity autocorrelation function for long 
times in addition to producing the logarithmic terms in the density expan- 
sion of the transport coefficients. Pomeau (48) gave an explanation of the 
long-time tail of the velocity autocorrelation function utilizing a cluster 
truncation of a (pseudo) Bogoliubov-Born-Green-Kirkwood-Yvon 
(BBGKY) hierarchy where the interaction Liouville operator is replaced by 
the T-scattering operator. Pomeau also introduced the eigenfunction, per- 
turbation method for the study of the ring collision operator and found that 
theories based on the ring collision operator still contain divergences in two 
dimensions beyond those divergences previously uncovered. This work of 
Pomeau (48) and the related work of Ernst and Dorfman (21) contain certain 
"repeated ring terms" in addition to the simple "ring" terms discussed 
previously. 

Gradually, the importance of the static Enskog correction to the 
Boltzmann equation was appreciated anew. It was acknowledged that such 
Enskog-like corrections would have to be included in addition to the ring 
dynamic events in order to obtain a kinetic theory of dense gases and 
liquids. Particularly notable work in this regard is the work of Mazenko, (4~ 
Lebowitz and Resibois, (34) Gross, (27) Dorfman and Cohen, (18) and De 
Schepper and Cohen. (14~ It also developed that the Enskog correction was 
related to the short-time (high-frequency) behavior of the correlation func- 
tions. 

The work described here is a further step toward an adequate theory of 
nonequilibrium phenomena in dense fluids. Analogies between the equilib- 
rium and nonequilibrium problems have historically been a chief source of 
inspiration in the nonequilibrium domain even though the analogies some- 
times fail. (~1'16) The similarity in the equilibrium and nonequilibrium prob- 
lems led us to investigate some of the more recent work in the equilibrium 
theory of fluids with the hope of exploiting it. It was natural therefore to 
consider the Percus-Yevick theory (44'45) which provides an integral equa- 
tion for the two-particle distribution function in terms of the interparticle 
potential. Here we describe a construction of a generalization of this 
successful equilibrium theory to the nonequilibrium domain. 

The historical summary just given is by no means complete. Ernst et  

al. (2~ have reviewed the work in kinetic theory up to the discovery of the 
divergences, while Pomeau and Resibois (47~ have reviewed the more recent 
work. Papers of Boltzmann (s~ and his contemporaries and the controversies 
of Loschmidt (38~ and Zermelo (6~ are given in the historical account by 
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Brush. (8> The next section, Section 2, is a short description of the correla- 
tion function formulation of the BBGKY hierarchy and nonequilibrium 
problems. (27'33'4~ We make no attempt to recall all the required derivations 
and instead rely heavily on the work of Mazenko. (4~ The linearized cluster 
expansions are also introduced (21) and a memory function for the cluster 
function is defined. (42'61) Section 3 makes contact with the low-density 
Boltzmann theory (1~ and the Lenard-Balescu-Guernsey (LBG) (2'29'35) the- 
ory of the electron gas. The usual treatment of the LBG theory is via a 
parameter (54) expansion. Here we utilize a more sophisticated functional 
expansion and the ideas presented in this section form the basis of the 
eventual construction of the Percus-Yevick nonequilibrium analog equa- 
tion. In Section 4 we attempt to improve the convergence of the functional 
expansion introduced in Section 3 at least for the case of hard-core 
potentials. A nonequilibrium analog of the Kirkwood-Salsburg equation (32> 
is found as a result of this calculation. The equilibrium theory of fluids 
leads us to expect that an even better theory can be found for nonequilib- 
rium hard-core systems, so we proceed in Section 5 to construct the 
nonequilibrium analog of the Percus-Yevick equation. (44) We invoke the 
functional analog of Burmann's theorem (56) to invert the functional expan- 
sion of Section 3. The nonequilibrium analog of the Ornstein-Zernike (43) 
relation is found as a condition of the coefficient on the inverse expansion. 
The inverse functional expansion is then utilized to improve the conver- 
gence of the second functional expansion discussed in Section 4 and the 
result to lowest order is the nonequilibrium Percus-Yevick analog. The 
final section, Section 6, involves a comparison of the nonequilibrium 
Percus-Yevick theory with some other recent theories of nonequilibrium 
phenomena. We also present a physical picture of the dynamical processes 
included in the nonequilibrium Percus-Yevick analog theory. 

2. NONEQUILIBRIUM BBGKY HIERARCHY; CORRELATION FUNC- 
TIONS; CLUSTER FUNCTIONS; THE MEMORY FUNCTION 

The nonequilibrium Percus-Yevick equation is constructed in terms of 
the correlation functions CU(1;llt),  CV(12;llt), CU(123; l i t ) ,  etc., de- 
fined by 

CU(1; l l t )  = (By(lit)By(T)) (la) 

CU(12; Tit ) = (Sg(12lt)~f(T)) (lb) 

C v(123; Tit) -- (Sg(123[t)Sf(l)), etc. (lc) 

using the expressions given in Eqs. (5) and (6). The brackets ( �9 �9 �9 ) denote 
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an average over a canonical ensemble 

e-BH[ Vl 
( ' " ) - = f  z[u] " ' ' d r  (2) 

of an N-particle system in an external field U(r~) described by a Hamilto- 
nian H [ U ]  of the form 

N p2 1 W N N 

HI U] ~ E ~ + ~ E E V(Ir~ - r B I) + E V(r~) (3) 
a = l  a = l  f i = l  a = l  

and the partition function Z [ U ]  is given by 

u] _ f  e-B.tuJ ar (4) Z[ 

These definitions of the correlation functions are similar to those intro- 
duced by Mazenko (4~ when the external field is set to zero, as will be done 
here at the end of our construction of the Percus-Yevick nonequilibrium 
analog equation. Here we assume the N particles are identical, each having 
mass m and interacting by means of a potential energy V ( l r .  - r a l )  which 
depends upon the distance between the particles. The ath particle has 
momentum p~ and position G and the integration of the ensemble average 
Eq. (2) is over all of N-particle phase space dF = drldp2 �9 �9 �9 drNdpN. The 
temperature of the canonical ensemble is characterized by the usual param- 
eter fi = 1 / k B T ,  where k B is the Boltzmann constant. 

The correlation functions (1) are easily shown to be equivalent to the 
usual reduced distribution functions obtained by integration of the N- 
particle nonequilibrium distribution for the case of small deviations from 
the equilibrium state. (3'22'34'4~ While this restricts the kinds of problems 
that may be studied, the correlation functions have the advantage of 
specified initial conditions, so there is no ambiguity in the statement of the 
nonequilibrium problem. Furthermore, many quantities of physical interest 
can be obtained quite easily from the first correlation function C U- 
(1; 1[/).(22,40) The correlation functions defined in Eq. (1) have a genetic 
form in the sense that none of the N particles is selected for special 
treatment. This is accomplished by the introduction of "singular phase 
functions" f(1), g(12), g(123), etc., where 

N 

f(1) --= ~ 6(I - q.) 
a = l  

N N 

g(12) =-- ~] ~] 6(1 - q,~)8(2 - qB) 
a = l  f l = l  (a§ 
N N N 

g(123) --= ~] E E 3(1 - q~)6(2 - qB)6(3 - qv) 
o t = l  f l = l  7 = 1  

(5a) 

(5b) 

(5c) 
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etc. In definitions (5), the phase variables of the ath particle are denoted by 
q, =--(p~, r~). The phase variables represent the actual positions and mo- 
menta of particles of the system and they are involved in the canonical 
averages. The external variables 1 = (~r 1, xl), etc. are in this sense simply 
parameters upon which the correlation functions depend. It proves conve- 
nient to introduce augmented singular phase space functions ~f(1), 8g(12), 
8g(123), etc. defined by 

6f(l) - f ( 1 )  - ( f ( 1 ) )  (6a) 

6g(12) = g(12) - ( g (12 ) )  (6b) 

6g(123) ~ g(123) - (g (123))  (6c) 

etc. The augmented functions allow us to focus on the deviations from 
equilibrium, which are the central interest of this paper. 

Since there is a close connection between the usual nonequilibrium 
reduced distribution functions and the correlation functions of definitions 
(1), it is not surprising that the correlation functions satisfy a BBGKY 
hierarchy of equations. 2 The first two equations of the BBGKY hierarchy 
in the correlation function notation appear as 

{ ~t +i[Ly(1)+ Lu(1)])CU(1;l[t)+ ifd2Li(12)CV(12;T]t)=O 
(7a) 

{ ~t +iILf(12)+ L1(12) + Lv(12)]} C~(12;T]t) 
+ifd3[L,(13)+ L,(23)]CV(123;TIt)=O (7b) 

In the above equations, the free one- and two-particle Liouville operators 
Lf(1) and Lf(12), respectively, are given by 

-~1 0 ( '~'1 0 qr2 0 ) 
L f ( 1 ) = - t - - - - -  and Lf(12)=  - i  - - . - - + - - . - -  (8) 

m Ox 1 m Ox I m 3x 2 

The interaction Liouville operator LI(12) for the interparticle interaction is 
given by 

OV(Xl-X2) ( a 0 ) 
L1(12 ) = i 0 X  1 �9 0~rL a~r2 (9) 

while the interaction Liouville operators Lv(I  ), Lu(12 ) for the external field 

2 We follow the usual procedure of the kinetic theory literature of referring to the set of 
equations developed by Bogoliubov, (3) Born and Green, (6,26) Kirkwood, (31) and Yvon (59) as 
the "BBGKY hierarchy of equations." 
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U(x 0 are given by 

0 U(x 0 
L~(1) = i Ox----~ O~r 1 and Lu(12 ) = Lu(1 ) + Lu(2 ) (10) 

One of the earliest applications of the BBGKY hierarchy was to 
transport phenomena in low-density gases. (3) The Boltzmann equation (3'4~ 
is obtained by assuming the correlation functions are analytic in the density 
and by utilizing some mathematical device to introduce irreversibility, 
replacing the Boltzmann "molecular chaos" assumption. (5) Perhaps the 
most elegant and simple of these devices is the memory function 
method, (42) which will be introduced later and will be employed in our 
construction of the nonequilibrium Percus-Yevick analog equation. 

The procedure just described is unsuitable for the Coulomb gas prob- 
lem since the coefficients of the density expansion of the correlation 
functions diverge owing to the long-range nature of the Coulomb force. 
The situation is ameliorated by considering expansions of the correlation 
functions in terms of a "Coulomb coupling parameter" which replaces the 
density as the expansion parameter. The actual calculations are compli- 
cated, but some relief is provided by the introduction of the cluster 
functions, which effectively "weaken the correlations between particles." 
Specifically the cluster functions vanish whenever a member of the "cluster 
of particles" is removed physically in distance and time away from the 
other members. Here we are not particularly interested in the Coulomb gas 
problem; however, we will have a use for the cluster functions because the 
property just described makes the functional expansions of the cluster 
functions relatively simple in comparison with the corresponding functional 
expansions of the correlation functions. 

The cluster functions X u(1; T [ t), X u(12; l] t), X u(123; T [ t), etc. can be 
defined in terms of the correlation functions in a variety of ways. One 
should keep in mind that the correlation functions are related to the 
nonequilibrium distribution functions only for fluctuations close to equilib- 
rium and therefore it is appropriate to utilize the linearized cluster functions 
following the work of Ernst and Dorfman (21'53) and others: 

c~(1 ;T l t )  = xU(1;TIt) (lla) 

cu(12;i[t) = xu (12 ; l l t )  + (1 + P.z)(f(1))xU(2;TIt) ( l ib)  

c tr(123; ] ] t) = x v(123; T [ t) + ( 1 + P,2 + P13 ) ( f (1) )x  t~(23; T I t) 

+ (1 + P,3 + Pz3)(g(12))x u(3; Tit ) (1 lc) 



308 Varley 

etc. These equations are quite easily inverted and we obtain 

xW(1;TI t) = Ct~( l ;Tl t )  (12a) 

x~(12 ;TI t )  = C~J(12;T[t) - (1 + P,2)(f(1))CU(2;llr (12b) 

x U ( 1 2 3 ; i l t )  = C~:(123; T[ t ) -  (1 + P,2 + e13)(f(1))cu(23;TI t) 

- {1 + P13 + e23}(g(12))cu(3; Tit) (12c) 

etc. The equilibrium quantities (f(1)~, (g(12)) ,  (g(123)),  etc. appearing in 
Eqs. (11) and (12) are ensemble averages defined by Eq. (2) of the singular 
phase space function defined by Eq. (5). They are simply related to the 
usual spatial equilibrium distributions g(xl), g(x 1, x2), etc. via 

ng(x0q,(~rl) = ( f ( 1 ) )  (13a) 

n2g(x,, x2)~(cq)q~(~r2) = (g (12 ) )  (13b) 

n3g(xl, x2, x3)~(,Ir ')dp(qt2)~('lr3) - (g (123))  (13c) 

Here we utilize n for the equilibrium particle density and the Boltzmann 
distribution is given by q~(~r)~-(fl/2~rm)3/2exp(-fl~r2/2m). When the ex- 
ternal field U(rl) is switched off, the single-particle distribution becomes 
unity g ( x ) ~  1 and the two-particle distribution becomes a function only of 
the distance between the two particles g(x 1, x2) ~ g(Ix~ - x21). The permuta- 
tion symbol P12 interchanges the indices of the particles 1 and 2 in the 
function following the permutation symbol. 

v One can easily show utilizing Eqs. (12) that the cluster functions X 
have the "cluster property," but perhaps a few words of explanation would 
be appropriate. The barred index to the right of the semicolon is not 
involved in the cluster property, so the X t:(12; Tit) of Eq. (12b) is consid- 
ered first. When particle 1 is spatially separated from particle 2 at time t 
then one obtains from definition (lb) C u(12; 1[ t) ~ ( 1 + Pl2}(f(l))C u(2; 
Tit  ) and the right-hand side of Eq. (12b) vanishes. One therefore sees that 
X t r(12; Ti t  ) is zero whenever particle 1 is "far from" particle 2 and thus 
X v(12; T I t) has the cluster property. 

Mazenko, (4~ Lebowitz and Resibois, (34) and Gross (28) have chosen to 
introduce more complicated cluster functions which are useful if one wishes 
to discuss the short-time contributions to the kinetic equations which are 
important for the high-frequency and high-density behavior of the correla- 
tion functions. Here we are interested in presenting a pedagogically simple 
treatment, and, furthermore, these linearized cluster functions are adequate 
for the discussion of interesting phenomena such as the long-time "tail" of 
the velocity autocorrelation function. (1) 

Expressions (11) can be utilized to eliminate the correlation functions 
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in the BBGKY hierarchy equations (7). One thus obtains the BBGKY 
hierarchy of equations expressed in terms of the cluster functions. The first 
equation of this hierarchy is 

[ z -  Zf(1) - Zu(1)]~u(1;Tlz) 

- -  f d  2 L I (12){ 1 + e12) ng(xl)~C~r,)x u(2; i lz) 

= X u ( 1 ; l l t  = 0) +fd2Li(12)~u(12;llz) (14) 

The time variable in Eq. (14) has been Laplace-transformed utilizing the 
definition (40,46) 

f(z)=-ifo~dtei'tf(t ) with I m z > 0  (15) 

where f(z) is the Laplace transform of the function f(t). The Laplace 
transform is introduced since, among other things, the memory function 
formalism which is introduced shortly is most conveniently utilized in the 
Laplace transform domain of time. 

Previously we mentioned that the primitive secular divergence will be 
removed by introducing the memory function (42'57'61) formalism. Specifi- 
cally, the memory function/~(1; T ]z) is defined via 3 

[ z -  L f ( 1 ) -  Lu(1)];~u(1;Tlz) 

- fd2 L, (12){ 1 + Pl2) ng(x~)O(~r,);~ u(2; T Iz) 

f - - X U ( 1 ; T I t - - O ) +  d2 /~(1 ;210  x (2;TIz) (16) 

If one introduces an inverse to the one-particle cluster function )~ u(1;1]z) 
via 

f d l  ;~ u(1; T I z)x u( T ; 2 1 z) - '  = ~ (1 - 2) (17) 

then one obtains an explicit expression for the memory function by 
comparing Eqs. (14) and (16) and utilizing the inverse one-particle cluster 
function defined by (17). One obtains 

R(1;21z)=fd2L,(12)fdTycu(12;TIz)ycv(i;21z) -1 (18) 

Introducing the following definitions for the "renormalized" two-particle 
cluster function R(1,2; 1 I z), the "renormalized" three-particle cluster func- 

3 The memory function for the cluster function introduced here differs from that defined in 
Ref. 53. 
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tion/~(1, 2, 3; l lz ), etc. 

,i(12; T Iz) -fd~ v(12; 21 z))~ u(2; 1 I z)-1 (19) 

/ ~ ( 1 2 3 ; T i z ) _ f d ~ 2 U ( 1 2 3 ; ~ l  . ~  . - t  z)x (2, l l z )  (20) 

one obtains the first two equations of the BBGKY hierarchy in the 
following form. 

2.1. First Equation of Hierarchy 

I z -  Ly(1) - L~/(1)])~u(1; T [z) 

- f d2Li(12)(1 + Pl2)ng(xl)e~(~rl)~u(2;- f  lz)  

= XU(1; Tit  = 0 )  + fd2fdit,(12)Ku(12;ilz)~(YZ; TIz) (21a) 

2.2. Second Equation of Hierarchy 4 

[z - L(12)]/~ u(12; 2 t z )  - L 1 (12)( 1 + P12)ng(x,)4,(~r,) 6(2 - 2) 

=fdixU(12; Tit = o)2 u(1 ;2[z)  -1 

+ fd3 (1 + el~}L,(13)[ (1 + e~3}ng(x,)q,(~rOl~u(23; ~.lz) 

+/~v(123;21z) ]  

+ fd3(1 + P,2}LI(13)[ (1 + P13}n2(g(XlX2) 

- g(xl)g(x2)) q, Qr~)q,(r 3(3 - 2)] (21b) 

where the memorff funct ion/~(1;2[z)  and the "renormalized" two-particle 
cluster function R(12; l lz ) are related by (18) if one utilizes definition (19) 

u(1; ~ I z) = f d2 L, (12)/~ u(12; 21 z) (22) 

Our use of the BBGKY hierarchy equations (21) is limited to the 
domain of asymptotic long times. Experience indicates (z0 that we may 

4 In Eq. (21b) we utilized the definition L(12) = Lf(12) + L,(12) + Lu(12 ). 
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safely neglect X v(12; T I t = 0) for the calculation of the long-time behavior 
of ;~ te(1;l lz ). We neglect this "initial condition" term in the sections that 
follow. This contribution is important if we are to have a theory that is 
valid for liquid densities. Here we are primarily interested in the dynamical 
processes since we wish to make our construction of the nonequilibrium 
Percus-Yevick analog pedagogically as simple as possible. In a future 
paper we will describe how this important contribution is included in the 
nonequilibrium analog of the Percus-Yevick theory. 

3. THE FUNCTIONAL EXPANSION OF THE RENORMALIZED SEC- 
OND CLUSTER FUNCTIONAL IN POWERS OF THE INTERAC- 
TION LIOUVILLE OPERATOR TO LOWEST ORDER 

Previously, we mentioned that one classical method (3:3) of treating the 
BBGKY hierarchy of equations is to assume each of the distribution 
functions has an expansion in powers of the density. This approach works 
well in the equilibrium case, but fails in the nonequilibrium domain in the 
limit of long times even if one utilizes a method such as the memory 
function to remove the primitive secular divergences. (16'23'55) Nonetheless, 
for finite times the density expansion can provide some insight into the 
more important dynamical processes. The density expansion approach can, 
of course, be applied as well to correlation functions and also to the cluster 
functions. If one assumes the "renormalized" second cluster function 
/~ •(12; T [z) has a density expansion of the form 5 

/ ~ v ( 1 2 ; l l z ) = n G 2 ( 1 2 [ z ) [ / ~ l ( 1 2 ; T [ z ) + n / ~ 2 ( 1 2 ; l [ z ) + . . .  ] (23) 

then one immediately obtains from the second BBGKY equation (21b) 

/~](12; TIz ) -- LI(12)(1 + PI2)g(xl)~(,Irl)~(2- 1) (24) 

where we have also utilized an expansion similar to (23) for/~ v(123; T I z). 
Substitution of (24) in the first equation of the BBGKY hierarchy, Eq. 
(21a), leads quickly to the usual form of the linearized Boltzmann equa- 
tion.(4,34, 53) 

We mentioned earlier the particular usefulness of the cluster functions 
in connection with the Coulomb gas problem. The standard procedure is to 
expand the cluster functions (or here, the "renormalized" cluster functions) 
in powers of the plasma parameter in a manner similar to expansion (23). 
The lowest-order theory is the usual Lenard, (35) Balescu, (2) Guernsey (29) 
kinetic equation. Here we follow a somewhat different procedure to set the 

5 The two-particle Green's function G2(12 [z ) _ {z - L(12)}- 1 is utilized in Eq. (23). 
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stage for the eventual construction of the nonequilibrium Percus-Yevick 
equation in Section 5. 

The construction of the nonequilibrium Percus-Yevick equation (53) 
does not involve parameter expansions. Instead we shall assume the exis- 
tence of more general functional expansions. (54) We will illustrate the 
procedure by obtaining the LBG result which is the nonequilibrium analog 
of the Debye-Hfickel (7'12) equilibrium theory. Let us assume the "re- 
normalized" clusters have functional expansions of the form 

/~V(IZ;TIz) = A0(lZ;l lz ) +fd3 {l + P,2}LI(13)A~(32;TIz) 

+ f a 3 f d 4 ( l  + PI2}LI(13)LI(14)A2(432;TIz)+ . . .  (25a) 

u( 23; T Iz) = Bo( 23; x + fa4  1 + P12}L~(14)B1(432; T ]z) 

+ f + P~2}Ll(I4)L,(15)B2(5432; Ttz ) + . . .  (25b) 

The form of the functional expansions (25) is the nonequilibrium general- 
ization of the corresponding equilibrium functional expansions. The zeroth- 
order terms A0(12;TIz), B0(123;llz ), etc. vanish for reasons that are 
similar to those used in the corresponding equilibrium case. 

Substitution of the functional expansions (25) into the equation (2 t b) 
of the BBGKY hierarchy for the "renormalized" cluster functions yields 6 

/~ u(12; ] lz )  = Gf(12lz)L,(12){ 1 + P,2}ng(x,)q~(~rl) 3(2 - i) 

+ Gf(J21z)fa3 ( 1 + P,2) t,1 (13)( 1 + PB) ng(xl)dP(~rl) 

x u(23; T Iz) (26) 

In obtaining Eq. (26) we first kept the lowest-order terms in the interaction 
Liouville operator after substitution of expansions (25) in the hierarchy 
equations (21), We then utilized the expansions (25) to reintroduce the 
"renormalized" cluster functions, since the resulting equation (26) for the 
"renormalized" cluster function /~u(12; T I z) is easier to solve than the 
equation for the functional expansion coefficient A 1(32; T I z)- 

Equation (26) is solved utilizing methods of singular integral equations 

6 The terms fd3 {Lt(13 ) + Lt(23))nq,{~r3)/~(12; 1 ]z) vanish in Eq. (26) if the external field is 
set to zero, since then g(xl) = 1. The external field was introduced to retain these quantita- 
tively important terms. See p. 174 of Ref. 53 for further discussion. We also utilized the 
definition of the free-particle Green's function given by Gy(12) = {z - Ly(12)}- J. 
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for the "renormalized" second cluster function /~(12; l lz  ). When one 
substitutes this form of/~(12; T I z) into the first equation of the BBGKY 
hierarchy (21b) one obtains the well-known LBG theory] 

The approach we have described is useful for the long-range Coulomb 
interaction; however, for gases having hard-core interactions there are 
difficulties. One suspects an expansion in the interaction Liouville operator 
might be appropriate for those regions of phase space where the Coulomb 
potential is weak. The singular nature of the hard-core interaction presents 
difficulties, since for some regions there is no interaction at all but at short 
distances the interaction is very strong. Some revision of the functional 
expansion procedure is thus required. 

4. AN IMPROVED FUNCTIONAL EXPANSION AND THE 
KIRKWOOD-SALSBURG (GENERA) EQUATION 

The poor convergence properties of the functional expansions (25) of 
the "renormalized" cluster function/~ ~(12; l lz) in powers of the interac- 
tion Liouville operator LI(12) leads us to consider other alternative func- 
tionals. We respond to the situation by seeking an alternative to the 
functional/qu(12; T ]z) utilizing an argument similar to one introduced in 
our previous work on an alternative construction of the equilibrium Per- 
cus-Yevick equation. (53) The strategy in the equilibrium case was to 
examine the virial expansion of the cluster function for insight into the 
possible form of an improved functional. We follow that procedure here 
and rewrite the virial expansion of the "renormalized" second cluster 
function (23) in the form 

 (12; T Iz) - nG2(121z)Lz (12)( 1 + 6(2 - ] ) ]  

= n2/~2(12;llz ) + nS/~3(12;]lz) + . . .  (27) 

where we utilized the Boltzmann result (24) in the lowest-order term. The 
Choh-Uhlenbeck term /~2(12; T I z) and all higher-order terms in (27) in- 
volve the indirect interaction of particles one and two mediated by the 
remaining particles of the system. 

7 Gell-Mann and Brueckner (25) and others have treated the corresponding quantum mechani- 
cal problem. Macke (39) appears to have left out the terms just mentioned since they do not 
occur in the equilibrium problem. 
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These considerations encourage us to propose ~(12; l iz ) as an alterna- 
tive functional for the N-particle system, where ~(12; T ]z) is defined by 

 (12;Tiz )= 62(121 _] A z) [RU(12;TIz) nG2(12 z)L,(12) 

X ( l  + P12} g (x , )q , (~ , )8 (2 -  3)] (28) 

7/(12; 1 [z) m powers of the The hope is that a functional expansion of A - 
interaction Liouville operator Lz(12 ) might have better convergence proper- 
ties than the functional expansion (25). 

If one contemplates a functional expansion of 4(12; l lz) in powers of 
LI(12 ) similar to (25) 

6(12; TIz) -  0(12; TI ) +fd3 (1 + Plz)Lz(13)~(32;Tlz ) 

+ f a3 f a4(1 + P12)L,(13)LI(14)~2(432;[]z) + - . -  (29) 

one obtains to first order in the interaction Liouville operator an equation 
which is a nonequilibrium analog of the Kirkwood-Salsburg equilibrium (32) 
equation: 

Gz(12]z)-~[ ~.t,(12; l [ z )  - nGz(12lz)Li(12)( l+P ,2  ) g(xOO(~r~) 8(2 - 1)] 

=fa3 {1 + elz}Lt(13){1 + e,3)ng(x,)eo(qr,)l~u(23;llz) (30) 

Equation (30) was obtained by first constructing a hierarchy equation by 
operating on 7](12; l lz ) with {z - L2(12)). One obtains a hierarchy equa- 
tion involving the second and third "renormalized" cluster functions de- 
fined by Eqs. (19) and (20). We then utilized the functional expansions (29) 
and (25) in this hierarchy equation and dropped second- and higher-order 
terms in the interaction Liouville operator. Finally, we utilized definition 
(28) to write the result (30) in terms of /~  u(12; l lz), an equation which is 
accurate to first order in LI(12). 

The equilibrium Kirkwood-Salsburg equation (32) is an improvement 
over the Debye-Htickel  equation (~2) at least for systems with hard-core 
interactions. One might expect a similar situation to hold in the nonequilib- 
rium domain, but we will not stop here since the equilibrium theory leads 
us to expect a still better equation, which will be obtained in the next 
section. 
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5. IMPROVEMENT OF THE CONVERGENCE OF THE SECOND 
FUNCTIONAL EXPANSION VIA UTILIZATION OF A GENERAL- 
IZED BURMANN'S THEOREM 

5.1. Inversion of the "Renormalized" Cluster Functional Expansion 
in the Interaction 

Previously, we considered two functional expansions: expansion (25a) 
for the "renormalized" second cluster function R v(12; l lz) and expansion 
(29) for the functional ,/(12; l lz). The functionals R v(12; l [z)  and ,/(12; 
l lz ) are obviously closely~ related, and one might expect the expansion of 
i(12; l [z)  in powers of R v(12; l lz) to converge rapidly [or at least more 
rapidly than either expansion (25a) or expansion (29)]. These observations 
are similar to those made in the equilibrium case. (53) 

We utilize the functional analog of Burmann's theorem (56) to improve 
the convergence of expansions (25a) and (29). We first assume an inverse 
functional expansion of the form 

Gf(12[z)Li(12){ 1 + P,2)ng(xl)q~('n',) 8(2 - i) 
(31) 

= D0(121z) +fa3 (1 + P12)O (231z)l v(13;Tlz) + . . .  

This expansion is the nonequilibrium generalization of the inverse func- 
tional expansion of the potential V(Ir I -r21 ) in powers of the cluster 
function C(I r~-  r21). The lowest-order term D0(12 [z) vanishes because of 
the cluster property of the/~ v(12; 1]z). 

The coefficients of the inverse functional expansion Dl(12lz), etc. are 
found by substitution of (31) into the expansion (25a). This procedure is 
not particularly useful here. Instead we substitute the expansion (31) in Eq. 
(26) to obtain a condition of Dl(12lz ). This is permissible since Eqs. (26) 
and (25a) are equivalent, to lowest order in the interaction Liouville 
operator LI(12). We follow the procedure used in the equilibrium case and 
introduce the direct correlation functional D(23]z) defined by { 1 + P12} 
D1(23 [z) = 6(2 - 3) - {1 + PI2}D(23 Iz). One then substitutes (31) into 
(26) and one obtains, after a simple manipulation, a condition on the direct 
correlation function D(12lz) which is the nonequilibrium analog of the 
Ornstein-Zernike relation 

{1 + P]~)D(241z ) 
-- Gi(12lz)(l + P]2)Gf(141z)-~fdi1~v(24;-flz) 

-Gf(12lz){1 + P,2} (32) 

• f d3Oy(13lz)-'(1 + P,3)D(34[zl f d-fKv(23;ilz) 

We kept terms to first order in/~ v(12; i lz) in obtaining (32). 
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5.2. Obtaining the Percus-Yevick Equation 

Substitution of the inverse functional expansion (31) in the second 
functional expansion (30) yields the functional expansion of ~(12; l lz ) in 
powers of the "renormalized" second cluster function/~ v(12; T Iz): 

G2(121z)-1[/~V(1E;llz) 

- nG2(12lz)L ' (12)( 1 + Pl2) g(xl)qa(~rl) 8(2 -- ])] 

=fd3 {1 + en)Gj(131z)-'fdT~v(13;~l z) 

- fd3  (1 + Pn}Gr(131z)-~ f d;l{1 + Pla}D(34[z) 

X fd21~ v(14; 2 [ z)/~ c~(23; i lz ) (33) 

Equation (30) is the equivalent to expansion (29) at least to lowest order. 
Equation (30), which is expressed in terms of R v(12; l[z), is tess compli- 
cated than (29) written in terms of the expansion coefficients ~1(12; [[z), 
A1(12; l lz ), etc. If one subsequently utilizes the nonequilibrium analog of 
the Ornstein-Zernike relation (32), one obtains an expression for the direct 
correlation functional, which in turn can be utilized to eliminate D(12 ]z) in 
expansion (33). This procedure yields 

G2(12 [ z ) - '  [/~ v(12; T Iz) 

- nG2(12lz)Zz (12){ 1 + P17) g(x0e~(~r0 8(2 - 1) ] 

: fd3  {1 + ,,=} [L,(13)fd~,i ~(13; ~ Iz) 

+nL,(13){1 + P~3}g(x,)~(,tt,)}l~V(23;Tlz) (34) 

which is nonequilibrium analog of the Percus-Yevick equation written in 
terms of the "renormalized" cluster functional/~v(12; T I z). In Section 6, 
we write the nonequilibrium Percus-Yevick analog equation in terms of the 
"renormalized" correlation functions so that the form of the equation is 
closer to the expression usually given for the equilibrium Percus-Yevick 
equation. 

6. COMPARISON WITH OTHER THEORIES 

Previously, when we reported our nonequilibrium analog of the Per- 
cus-Yevick equation we wrote the equation in terms of the "renormalized" 
correlation functions F(12; T Iz ). The "renormalized" correlation functions 



Nonequilibrlum Analog of Percus-Yevlck Equation 317 

occur naturally if one returns to the BBGKY hierarchy equation (7a) 

( z -  Ly(1)}C(1;T]z)-- C(1;Tlt=O) + f d2Ll(12)d(12;TIz) (35) 

where we have Laplace-transformed the time variable with definition (15). 
We introduce a memory function F(1; l lz  ) via the equation 

(z - Lf(1))C(1;IIz ) = C ( 1 ; i l t = 0  ) + f d2P(1;21z)6(2;ilz) (36) 

which is obviously similar to Eq. (16), which defines the memory function 
/~(1; 1]z) for the cluster functions. If one follows a procedure similar to the 
one utilized following Eq. (16), one obtains an explicit equation for the 
memory function F(1; l[z) in terms of the "renormalized" second correla- 
tion function I'(12; 1 I z) 

F(1; ft. I z) = fd2 i~, (12)F(12; 2lz) (37) 

The "renormalized" second correlation function I~(12; l tz ) is defined by 

~(12; 2 Iz ) =fA C(12; 1 Iz)C(1 ; 21z)- '  (38) 

A useful relationship between the "renormalized" second correlation func- 
tion 1~(12; 21z) and the "renormalized" second cluster function/~(12; 21z) 
is easily obtained by substitution of Eq. (l la) into Eqs. (37) and '(38), 
yielding s 

~'(12; 2lz ) =/~(12;2tz ) + (1 + P,2)nga(~r,){3(2 - 2) (39) 

Utilization of (39) in Eq. (34) yields the nonequilibrium Percus-Yevick 
analog equation in the form 

[ au(121z)-~(12;Tlz) - nay(121z)-~(1 + P12)~b(Ctl)d(2 - i ) ]  

=fd3 (1 + P~2)Ll(13)fd~(13;~lz) (40) 

• [ t ( 2 3 ;  i Iz) - n + 8(3 - b ]  

where 
which follows immediately from the definitions of the Green's functions. 

we also utilized the identity G2(121z)-l= Gf(12lz)-l--Lz(12), 

s Here and elsewhere in this section we have chosen the external field U to vanish since it is no 
longer necessary. When the external field vanishes, the equilibrium distribution g(xl) 
becomes unity. Nonlinear cluster functions could have been introduced instead of definitions 
(12) instead of the artifice of the external field, but this would cause other difficulties. (See 
Section 3.) 
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Equation (40) is the nonequilibrium analog of the Percus-Yevick equa- 
tion(44, 45) 

(exp[/3V(Ir ~ - r21)] } g(rlr2) - 1 
(41) =far3n{1-exp[ Bv(lr  , - r3l)] } g(r,r3) [ g(r3r2) - 1] 

The nonequilibrium theory consists of both Eq. (40) and Eq. (36), 
which is little more than the first equation of the BBGKY hierarchy written 
in the memory function formalism. The set of equations is utilized by.first 
solving Eq. (40) for the "renormalized" second correlation function F(12; 
T [z), from which one constructs the memory function l~(1; 2 I z),via_Eq. 
(37). One then solves Eq. (36) for the first correlation function C(1; l lz) 
with a known approximate memory function F(I; l lz). 

The virial expansion provides a convenient framework for comparison 
of the various nonequilibrium (and equilibrium) theories. (11'13) Although 
the virial expansion is not appropriate in the long-time limit for the 
nonequilibrium case, since the coefficients diverge, one can nonetheless 
make the comparison between two theories at a finite time, where there is 
no problem. The virial expansion is also a nice device, since the terms can 
be represented pictorially as some real dynamical processes, Nonequilib- 
rium theories can thus be classified in terms of the types of nonequilibrium 
processes they include. 

If one assumes that the "renormalized" second correlation function 
F(12; l lz ) has a virial (density) expansion of the form 

F ( 1 2 ; l l z )  = n[~l (12;T[z  ) + nl~2(12;llz ) + n2F3(12;l lz)  + " "  ] (42) 

one obtains from the nonequilibrium_analog of the Percus-Yevick equation 
(40) approximations for the F~(12; 1 I z). If one assumes that the memory 
function F(1; 1 I z) has an expansion similar to (42), one obtains via (37) the 
following: 

F,(1; Ttz ) = fd2 T(12)( 1 + P,z}~('rr,) 6(2 - 1) (43a) 

f,(l;  lz)=fa2fa3 T(12)GI(12){ 1 + "12} T(13) 

x (1 + P~3}eo(~q)G:(23)T(23)(1 + P23)eO(~r2)8(3- T) (43b) 

The above are "ring" dynamical events found in the theories of Dorfman 
and Cohen, (m Ernst and Dorfman, (21) Kawasaki and Oppenheim, ~176 and 
others. The third-order term F3(1; 1 I z) is written as the sum of three terms 

~3(1; TIz) = ~ ( 1 ;  TIz) + F~ ' (1 ;TIz )  + F3ev(1; 11 z) (44) 



Nonequllibrlum Analog of Percus-Yevlck Equation 319 

A R The first contribution of (44) is the "ring" contribution I" 3 (1 ; T I z) given by 

~ ( 1 ;  T I~) = fd2fa3fd4 T(12)Gf(12)(1 + P,2) T(13) 

)< (1 + Plz)dp(~rl)Gf(23)(1 + P 2 3 ) T ( 2 4 )  

x (1 + P24}e~(~rz)Gf(34)T(34)(1 + P34}~,(cr3)d(4- T) (45a) 

and is also found in the Ernst and Dorfman ~21) and Kawasaki and 
Oppenheim ~3~ theories. Figure 1 is a representation of a typical "ring" 
dynamical process contained in the third-order term F~(1; 1Ix). The next 
contribution to Eq. (44) is the "repeated ring" contribution I~R(1; T lz ) 
defined by 

]~3rtR(1; T I z ) = f a 2 f  d3fa'4 T(12)GI(12)(1 + el2} T(13) 

• (1 + e~3}4,(~n)Gj(23)T(23)Gj(23) 

• (1 + P23)T(24)(1 + P24)ep(,rt2)Gf(34) 

x T(34)( 1 + P34}~(cr3}3(4 - i) (45b) 

A typical "repeated ring" process contained in (45b) is represented in Fig. 
2. The Ernst and Dorfman theory (2~) contains the simple "ring" and 
"repeated ring" contributions to all orders in density. The final contribu- 
tion to (44) is the Percus-Yevick part of the third-order term l~3ev(1; l [z)  
and it is given by 

f'P'(1;TIz)=fa2fa3fa4r(12)cA12)(1 + e,a} r(13) 

• Gf(13){ 1 + P~3)T(14)( 1 + P~4)~(ch) 

x G~(34)T(34)(1 + P34)q~(~3)Gf(23) 

x T(23)( 1 + P23)~(~2)~(3 - -  1 )  (45c) 

Fig. 1. Typical "ring, dynamical event contained in 
~3R0; T I z) of Eq. (45a). 

\ / 

\> / >K 
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Fig. 2. Typical "repeated ring" dynamical event contained 

in I~'RR(1; T Iz) of Eq. (45b). 

Figure 3 is a representation of a typical "Percus-Yevick" dynamical 
process of the third order in density. This sort of "ring within ring" process 
has been examined by de Schepper and Ernst (~5) in two dimensions. They 
found that by selecting and summing these diagrams to all orders in 
density, one obtains a velocity autocorrelation function which behaves 
asymptotically in time as [ t ( ln t ) l /2]  - 1. The velocity autocorrelation func- 
tion calculated (17) on the basis of selecting and summing the "simple ring" 
and "repeated ring" terms to all orders in the density has an asymptotic 
behavior in time of t -a~2,  where d is the dimensionality of the system, 
either 2 or 3. The computer molecular dynamics simulations (1'58) yield 
results which are consistent with both of these predictions to within the 
"experimental" accuracy. When faster and larger computers become avail- 
able the simulations will no doubt be done to greater accuracy and for 
longer times than the current 100 collision times, so that the "true" 
asymptotic behavior of the velocity autocorrelation can be determined. The 
Percus-Yevick nonequilibrium analog equation (40) contains both "ring" 
and "ring within ring" terms in a "closed form" expression, so it should be 
possible to determine the velocity autocorrelation for all times. We have 
solved the nonequilibrium analog of the Percus-Yevick equation (40) 
utilizing an "eigenfunction, perturbation" method and have found an 
asymptotic behavior of the velocity autoeorrelation in the form t - 3 /2  in 
three dimensions. This will be presented in a future publication, since it is 
somewhat involved. A kinetic model solution of the Percus-Yevick non- 
equilibrium analog should give a prediction of how and when the asymp- 
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Fig. 3. Typical "ring within ring" dynamical event 
contained in l~3Pv(1; / [z) of Eq. (45c), the Percus-Yevick 
contribution of third order in density. 

'l / 

/ 

totic behavior for the velocity autocorrelation is obtained in two dimen- 
sions as well as for three dimensions. (24'37) 

Examination of the form of the nonequilibrium Percus-Yevick analog 
equation (40) provides us with another physical interpretation of the 
Percus-Yevick approximation in a dynamical (nonequilibrium) context. 
Notice that one can obtain Eq. (40) from the BBGKY hierarchy e,quation 
(21b) by (1) neglecting the third "renormalized" cluster function R v(123; 
l lz) and by (2) replacing the interaction Liouvitle operator L1(13 ) appear- 
ing under the integral by an effective interaction Liouville operator L~ff(12) 
given by 

Lff(13) = Ll(13) f d2~(13; 2lz) 

= (Gf(13}z) - l -  Gz(13[z)-l}fd2r(la;2]z) (46) 

which is the interaction Liouville operator "weighted" by the "re- 
normalized" second correlation function. Thus the nonequilibrium Percus- 
Yevick approximation consists of the intuitive picture of two excitations of 
the fluid interacting via an effective interaction Liouville operator given by 
(46). The form of L~ff(13) is evidentally the result of the collective motion of 
the remaining particles of the fluid not included in the excitations. This 
effective interaction Liouville operator is the nonequilibrium generalization 
of the effective interaction potential energy veff(12) of the equilibrium 
domain. The equilibrium Percus-Yevick approximation for the effective 
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in teract ion potent ia l  energy is essentially the true interact ion energy 
weighted by  the two-particle equil ibrium distribution function: 

vett(lx , - x2l ) = (1 - exp[  f l V ( l x  , - x2l)] } g(Ix, - x21) 

[ - f i V ( I x  , - x21)] g( lx,  - x21 ) (47) 

where vett([Xl -- X21 ) in the first expression is the Percus -Yevick  approx ima-  
tion for the direct correlation function. The  second approx imate  expression 
is valid only for systems of weak interparticle interactions and  we have 
ment ioned  it here only to help in making  a intuitive connect ion between the 
equil ibrium and nonequi l ibr ium theories. 

The  Pe rcus -Yev ick  theory has thus been generalized to the nonequil ib-  
r ium domain  in a fo rm which is relatively simple and  therefore useful. The  
nonequi l ibr ium theory has the several interesting and appeal ing features 
described above.  We  will present  the asymptot ic  calculation of the velocity 
autocorre la t ion function in a separate  publication.  Work  is now in process 
toward including the initial contr ibutions in the second hierarchy equat ion 
so that  the nonequi l ibr ium Percus -Yevick  theory can be applied to fluids 
of higher density. 
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